
#### The Intel Microprocessors

8086/8088, 80186/80188, 80286, 80386, 80486 Pentium, Pentium Pro Processor, Pentium II, Pentium 4, and Core2 with 64-bit Extensions

Architecture, Programming, and Interfacing



**EIGHTH EDITION** 

Barry B. Brey

#### Chapter 5: Arithmetic and Logic Instructions

## Introduction

- We examine the arithmetic and logic instructions. The arithmetic instructions include addition, subtraction, multiplication, division, comparison, negation, increment, and decrement.
- The logic instructions include AND, OR, Exclusive-OR, NOT, shifts, rotates, and the logical compare (TEST).



## **Chapter Objectives**

Upon completion of this chapter, you will be able to:

- Use arithmetic and logic instructions to accomplish simple binary, BCD, and AS-CII arithmetic.
- Use AND, OR, and Exclusive-OR to accomplish binary bit manipulation.
- Use the shift and rotate instructions.



## **Chapter Objectives**

Upon completion of this chapter, you will be able to:

- Explain the operation of the 80386 through the Core2 exchange and add, compare and exchange, double-precision shift, bit test, and bit scan instructions.
- Check the contents of a table for a match with the string instructions.



# 5-1 ADDITION, SUBTRACTION AND COMPARISON

- The bulk of the arithmetic instructions found in any microprocessor include addition, subtraction, and comparison.
- Addition, subtraction, and comparison instructions are illustrated.
- Also shown are their uses in manipulating register and memory data.



## Addition

- Addition (ADD) appears in many forms in the microprocessor.
- A second form of addition, called **add-withcarry**, is introduced with the ADC instruction.
- The only types of addition *not* allowed are memory-to-memory and segment register.
  - segment registers can only be moved, pushed, or popped
- Increment instruction (INC) is a special type of addition that adds 1 to a number.

## **Register Addition**

- When arithmetic and logic instructions execute, contents of the flag register change.
  - interrupt, trap, and other flags do not change
- Any ADD instruction modifies the contents of the sign, zero, carry, auxiliary carry, parity, and overflow flags.

#### Immediate Addition

 Immediate addition is employed whenever constant or known data are added.



## Memory-to-Register Addition

 Moves memory data to be added to the AL (and other) register.

## Array Addition

Memory arrays are sequential lists of data.



## Array Addition

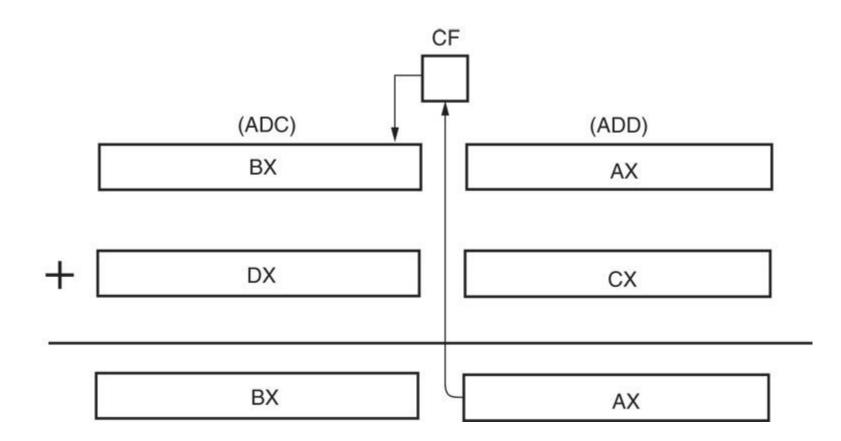
- Sequential lists of data.
- A sequence of instructions written 80386 shows scaled-index form addressing to add elements 3, 5, and 7 of an area of memory called ARRAY.
- EBX is loaded with the address ARRAY, and ECX holds the array element number.
- The scaling factor is used to multiply the contents of the ECX register by 2 to address words of data.

#### Increment Addition

- The INC instruction adds 1 to any register or memory location, except a segment register.
- The size of the data must be described by using the BYTE PTR, WORD PTR, DWORD PTR, or QWORD PTR directives.
- The assembler program cannot determine if the INC [DI] instruction is a byte-, word-, or doubleword-sized increment.



## Addition-with-Carry


- ADC) adds the bit in the carry flag (C) to the operand data.
  - mainly appears in software that adds numbers wider than 16 or 32 bits in the 80386–Core2

– like ADD, ADC affects the flags after the addition

- Figure 5–1 illustrates this so placement and function of the carry flag can be understood.
  - cannot be easily performed without adding the carry flag bit because the 8086–80286 only adds 8- or 16-bit numbers



**Figure 5–1** Addition-with-carry showing how the carry flag (C) links the two 16-bit additions into one 32-bit addition.





The Intel Microprocessors: 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium, Pentium Pro Processor, Pentium II, Pentium, 4, and Core2 with 64-bit Extensions Architecture, Programming, and Interfacing, Eighth Edition Barry B. Brey

Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 • All rights reserved.

## Exchange and Add for the 80486– Core2 Processors

- Exchange and add (XADD) appears in 80486 and continues through the Core2.
- XADD instruction adds the source to the destination and stores the sum in the destination, as with any addition.
  - after the addition takes place, the original value of the destination is copied into the source operand
- One of the few instructions that change the source.

## **Subtraction**

- Many forms of subtraction (SUB) appear in the instruction set.
  - these use any addressing mode with 8-, 16-, or
     32-bit data
  - a special form of subtraction (decrement, or DEC) subtracts 1 from any register or memory location
- Numbers that are wider than 16 bits or 32 bits must occasionally be subtracted.

 the subtract-with-borrow instruction (SBB) performs this type of subtraction



## **Register Subtraction**

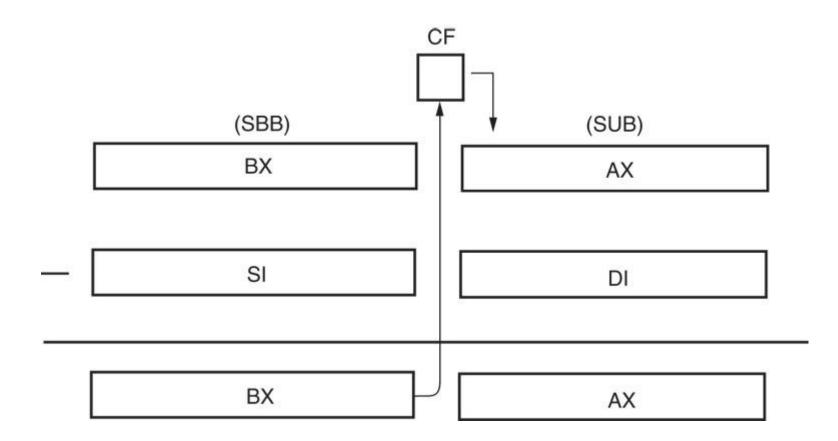
- After each subtraction, the microprocessor modifies the contents of the flag register.
  - flags change for most arithmetic/logic operations

## Immediate Subtraction

• The microprocessor also allows immediate operands for the subtraction of constant data.

## **Decrement Subtraction**

Subtracts 1 from a register/memory location.




#### Subtraction-with-Borrow

- A subtraction-with-borrow (SBB) instruction functions as a regular subtraction, except that the carry flag (C), which holds the borrow, also subtracts from the difference.
  - most common use is subtractions wider than 16 bits in the 8086–80286 microprocessors or wider than 32 bits in the 80386–Core2.
  - wide subtractions require borrows to propagate through the subtraction, just as wide additions propagate the carry



**Figure 5–2** Subtraction-with-borrow showing how the carry flag (C) propagates the borrow.





The Intel Microprocessors: 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium, Pentium Pro Processor, Pentium II, Pentium, 4, and Core2 with 64-bit Extensions Architecture, Programming, and Interfacing, Eighth Edition Barry B. Brey

Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 • All rights reserved.

## Comparison

• The comparison instruction (CMP) is a subtraction that changes only the flag bits.

- destination operand never changes

- Useful for checking the contents of a register or a memory location against another value.
- A CMP is normally followed by a conditional jump instruction, which tests the condition of the flag bits.



## Compare and Exchange (80486– Core2 Processors Only)

 Compare and exchange instruction (CMPXCHG) compares the destination operand with the accumulator.

- found only in 80486 - Core2 instruction sets

 If they are equal, the source operand is copied to the destination; if not equal, the destination operand is copied into the accumulator.

- instruction functions with 8-, 16-, or 32-bit data



- CMPXCHG CX,DX instruction is an example of the compare and exchange instruction.
  - this compares the contents of CX with AX
  - if CX equals AX, DX is copied into AX; if CX is not equal to AX, CX is copied into AX
  - also compares AL with 8-bit data and EAX with
     32-bit data if the operands are either 8- or 32-bit
- This instruction has a bug that will cause the operating system to crash.
  - more information about this flaw can be obtained at www.intel.com



# **5-2 MULTIPLICATION AND DIVISION**

- Earlier 8-bit microprocessors could not multiply or divide without the use of a program that multiplied or divided by using a series of shifts and additions or subtractions.
  - manufacturers were aware of this inadequacy, they incorporated multiplication and division into the instruction sets of newer microprocessors.
- Pentium–Core2 contains special circuitry to do multiplication in as few as one clocking period.
   – over 40 clocking periods in earlier processors



## 8-Bit Multiplication

- With 8-bit multiplication, the multiplicand is always in the AL register, signed or unsigned.
  - multiplier can be any 8-bit register or memory location
- Immediate multiplication is not allowed unless the special signed immediate multiplication instruction appears in a program.
- The multiplication instruction contains one operand because it always multiplies the operand times the contents of register AL.



## **Multiplication**

- Performed on bytes, words, or doublewords, – can be signed (IMUL) or unsigned integer (MUL)
- Product after a multiplication always a doublewidth product.
  - two 8-bit numbers multiplied generate a 16-bit product; two 16-bit numbers generate a 32-bit; two 32-bit numbers generate a 64-bit product
  - in 64-bit mode of Pentium 4, two 64-bit numbers are multiplied to generate a 128-bit product

## **16-Bit Multiplication**

- Word multiplication is very similar to byte multiplication.
- AX contains the multiplicand instead of AL.
   32-bit product appears in DX–AX instead of AX
- The DX register always contains the most significant 16 bits of the product; AX contains the least significant 16 bits.
- As with 8-bit multiplication, the choice of the multiplier is up to the programmer.



## A Special Immediate 16-Bit Multiplication

- 80186 Core2 processors can use a special version of the multiply instruction.
  - immediate multiplication must be signed;
  - instruction format is different because it contains three operands
- First operand is 16-bit destination register; the second a register/memory location with16-bit multiplicand; the third 8- or 16-bit immediate data used as the multiplier.



## **32-Bit Multiplication**

- In 80386 and above, 32-bit multiplication is allowed because these microprocessors contain 32-bit registers.
  - can be signed or unsigned by using IMUL and MUL instructions
- Contents of EAX are multiplied by the operand specified with the instruction.
- The 64 bit product is found in EDX–EAX, where EAX contains the least significant 32 bits of the product.



### 64-Bit Multiplication

- The result of a 64-bit multiplication in the Pentium 4 appears in the RDX:RAX register pair as a 128-bit product.
- Although multiplication of this size is relatively rare, the Pentium 4 and Core2 can perform it on both signed and unsigned numbers.



## Division

- Occurs on 8- or 16-bit and 32-bit numbers depending on microprocessor.
  - signed (IDIV) or unsigned (DIV) integers
- Dividend is always a double-width dividend, divided by the operand.
- There is no immediate division instruction available to any microprocessor.
- In 64-bit mode Pentium 4 & Core2, divide a 128-bit number by a 64-bit number.



• A division can result in two types of errors:

- attempt to divide by zero

- other is a divide overflow, which occurs when a small number divides into a large number
- In either case, the microprocessor generates an interrupt if a divide error occurs.
- In most systems, a divide error interrupt displays an error message on the video screen.



- Uses AX to store the dividend divided by the contents of any 8-bit register or memory location.
- Quotient moves into AL after the division with AH containing a whole number remainder.
  - quotient is positive or negative; remainder always assumes sign of the dividend; always an integer



- Numbers usually 8 bits wide in 8-bit division .
  - the dividend must be converted to a 16-bit wide number in AX ; accomplished differently for signed and unsigned numbers
- CBW (convert byte to word) instruction performs this conversion.
- In 80386 through Core2, MOVSX signextends a number.



- Sixteen-bit division is similar to 8-bit division
  - instead of dividing into AX, the 16-bit number is divided into DX–AX, a 32-bit dividend
- As with 8-bit division, numbers must often be converted to the proper form for the dividend.
  - if a 16-bit unsigned number is placed in AX, DX must be cleared to zero
- In the 80386 and above, the number is zeroextended by using the MOVZX instruction.



- 80386 Pentium 4 perform 32-bit division on signed or unsigned numbers.
  - 64-bit contents of EDX–EAX are divided by the operand specified by the instruction
    - leaving a 32-bit quotient in EAX
    - and a 32-bit remainder in EDX
- Other than the size of the registers, this instruction functions in the same manner as the 8- and 16-bit divisions.



- Pentium 4 operated in 64-bit mode performs
   64-bit division on signed or unsigned numbers.
- The 64-bit division uses the RDX:RAX register pair to hold the dividend.
- The quotient is found in RAX and the remainder is in RDX after the division.



#### The Remainder

- Could be used to round the quotient or dropped to truncate the quotient.
- If division is unsigned, rounding requires the remainder be compared with half the divisor to decide whether to round up the quotient
- The remainder could also be converted to a fractional remainder.



## 5-3 BCD and ASCII Arithmetic

- The microprocessor allows arithmetic manipulation of both BCD (binary-coded decimal) and ASCII (American Standard Code for Information Interchange) data.
- BCD operations occur in systems such as point-of-sales terminals (e.g., cash registers) and others that seldom require complex arithmetic.



#### **BCD** Arithmetic

- Two arithmetic techniques operate with BCD data: addition and subtraction.
- DAA (decimal adjust after addition) instruction follows BCD addition,
- DAS (decimal adjust after subtraction) follows BCD subtraction.
  - both correct the result of addition or subtraction so it is a BCD number



#### DAA Instruction

- DAA follows the ADD or ADC instruction to adjust the result into a BCD result.
- After adding the BL and DL registers, the result is adjusted with a DAA instruction before being stored in CL.

### DAS Instruction

• Functions as does DAA instruction, except it follows a subtraction instead of an addition.



# **ASCII** Arithmetic

- ASCII arithmetic instructions function with coded numbers, value 30H to 39H for 0–9.
- Four instructions in ASCII arithmetic operations:
  - AAA (ASCII adjust after addition)
  - AAD (ASCII adjust before division)
  - AAM (ASCII adjust after multiplication)
  - AAS (ASCII adjust after subtraction)
- These instructions use register AX as the source and as the destination.

PEARSON

#### AAA Instruction

 Addition of two one-digit ASCII-coded numbers will not result in any useful data.

#### AAD Instruction

- Appears before a division.
- The AAD instruction requires the AX register contain a two-digit unpacked BCD number (not ASCII) before executing.



#### AAM Instruction

- Follows multiplication instruction after multiplying two one-digit unpacked BCD numbers.
- AAM converts from binary to unpacked BCD.
- If a binary number between 0000H and 0063H appears in AX, AAM converts it to BCD.

#### AAS Instruction

AAS adjusts the AX register after an ASCII subtraction.

PEARSON

# **5-4 BASIC LOGIC INSTRUCTIONS**

- Include AND, OR, Exclusive-OR, and NOT.
  - also TEST, a special form of the AND instruction

- NEG, similar to the NOT instruction

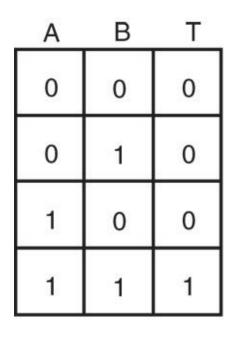
- Logic operations provide binary bit control in low-level software.
  - allow bits to be set, cleared, or complemented
- Low-level software appears in machine language or assembly language form and often controls the I/O devices in a system.

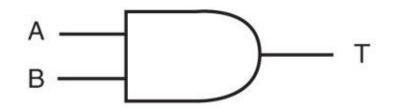


- All logic instructions affect the flag bits.
- Logic operations always clear the carry and overflow flags

- other flags change to reflect the result

- When binary data are manipulated in a register or a memory location, the rightmost bit position is always numbered bit 0.
  - position numbers increase from bit 0 to the left, to bit 7 for a byte, and to bit 15 for a word
  - a doubleword (32 bits) uses bit position 31 as its
     leftmost bit and a quadword (64-bits) position 63





#### AND

- Performs logical multiplication, illustrated by a truth table.
- AND can replace discrete AND gates if the speed required is not too grea
  - normally reserved for embedded control applications
- In 8086, the AND instruction often executes in about a microsecond.
  - with newer versions, the execution speed is greatly increased



**Figure 5–3** (a) The truth table for the AND operation and (b) the logic symbol of an AND gate.





(b)

(a)



The Intel Microprocessors: 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium, Pentium Pro Processor, Pentium II, Pentium, 4, and Core2 with 64-bit Extensions Architecture, Programming, and Interfacing, Eighth Edition Barry B. Brey

Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 • All rights reserved.

- AND clears bits of a binary number.
   called masking
- AND uses any mode except memory-tomemory and segment register addressing.
- An ASCIInumber can be converted to BCD by using AND to mask off the leftmost four binary bit positions.



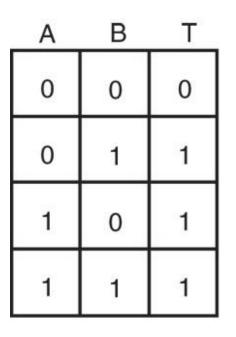
**Figure 5–4** The operation of the AND function showing how bits of a number are cleared to zero.

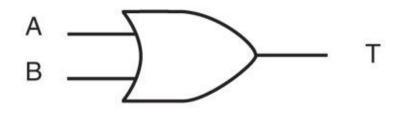
# x x x x x x x x X Unknown number 0 0 0 0 1 1 1 1 Mask 0 0 0 0 x x x X Result



The Intel Microprocessors: 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium, Pentium Pro Processor, Pentium II, Pentium, 4, and Core2 with 64-bit Extensions Architecture, Programming, and Interfacing, Eighth Edition Barry B. Brey

Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 • All rights reserved.


#### OR


- Performs logical addition

   often called the *Inclusive-OR* function
- The OR function generates a logic 1 output if any inputs are 1.
  - a 0 appears at output only when all inputs are 0
- Figure 5–6 shows how the OR gate sets (1) any bit of a binary number.
- The OR instruction uses any addressing mode except segment register addressing.



**Figure 5–5** (a) The truth table for the OR operation and (b) the logic symbol of an OR gate.





(b)

(a)



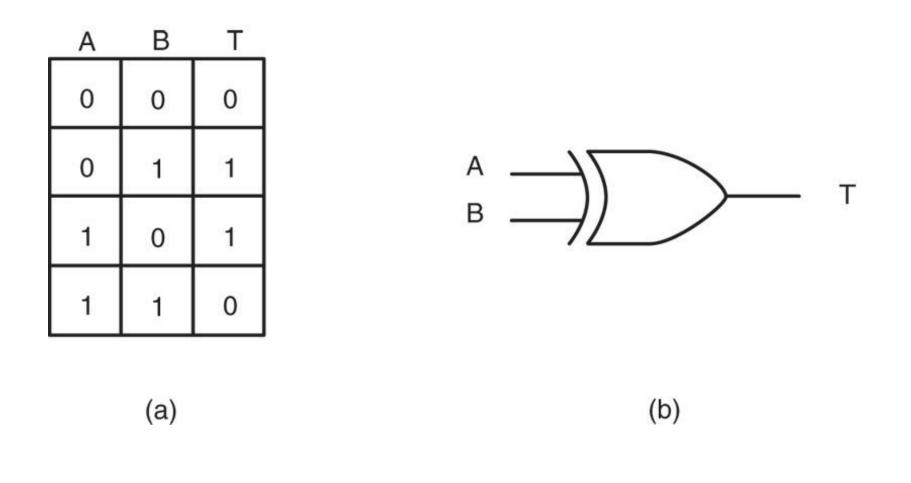
The Intel Microprocessors: 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium, Pentium Pro Processor, Pentium II, Pentium, 4, and Core2 with 64-bit Extensions Architecture, Programming, and Interfacing, Eighth Edition Barry B. Brey

Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 • All rights reserved.

**Figure 5–6** The operation of the OR function showing how bits of a number are set to one.

# x x x x x x x x X Unknown number + 0 0 0 0 1 1 1 1 Mask x x x x 1 1 1 1 Result




The Intel Microprocessors: 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium, Pentium Pro Processor, Pentium II, Pentium, 4, and Core2 with 64-bit Extensions Architecture, Programming, and Interfacing, Eighth Edition Barry B. Brey

Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 • All rights reserved.

#### **Exclusive-OR**

- Differs from Inclusive-OR (OR) in that the 1,1 condition of Exclusive-OR produces a 0.
  - a 1,1 condition of the OR function produces a 1
- The Exclusive-OR operation *excludes* this condition; the Inclusive-OR *includes* it.
- If inputs of the Exclusive-OR function are both 0 or both 1, the output is 0; if the inputs are different, the output is 1.
- Exclusive-OR is sometimes called a comparator.

The Intel Microprocessors: 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium, Pentium Pro Processor, Pentium II, Pentium, 4, and Core2 with 64-bit Extensions Architecture, Programming, and Interfacing, Eighth Edition Barry B. Brey **Figure 5–7** (a) The truth table for the Exclusive-OR operation and (b) the logic symbol of an Exclusive-OR gate.





The Intel Microprocessors: 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium, Pentium Pro Processor, Pentium II, Pentium, 4, and Core2 with 64-bit Extensions Architecture, Programming, and Interfacing, Eighth Edition Barry B. Brey

Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 • All rights reserved.

- XOR uses any addressing mode except segment register addressing.
- Exclusive-OR is useful if some bits of a register or memory location must be inverted.
- Figure 5–8 shows how just part of an unknown quantity can be inverted by XOR.
  - when a 1 Exclusive-ORs with X, the result is X
  - if a 0 Exclusive-ORs with X, the result is X
- A common use for the Exclusive-OR instruction is to clear a register to zero



**Figure 5–8** The operation of the Exclusive-OR function showing how bits of a number are inverted.

# $\begin{array}{c} x x x x x x x x x x & \text{Unknown number} \\ \oplus 0 \ 0 \ 0 \ 0 \ 1 \ 1 \ 1 \ 1 & \text{Mask} \\ \hline x x x x & \overline{x} \ \overline{x} \ \overline{x} \ \overline{x} \ \overline{x} \\ \end{array}$



The Intel Microprocessors: 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium, Pentium Pro Processor, Pentium II, Pentium, 4, and Core2 with 64-bit Extensions Architecture, Programming, and Interfacing, Eighth Edition Barry B. Brey

Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 • All rights reserved.

#### **Test and Bit Test Instructions**

- **TEST** performs the AND operation.
  - only affects the condition of the flag register, which indicates the result of the test
  - functions the same manner as a CMP
- Usually the followed by either the JZ (jump if zero) or JNZ (jump if not zero) instruction.
- The destination operand is normally tested against immediate data.

- 80386 Pentium 4 contain additional test instructions that test single bit positions.
   – four different bit test instructions available
- All forms test the bit position in the destination operand selected by the source operand.



# **NOT and NEG**

- NOT and NEG can use any addressing mode except segment register addressing.
- The NOT instruction inverts all bits of a byte, word, or doubleword.
- NEG two's complements a number.
  - the arithmetic sign of a signed number changes from positive to negative or negative to positive
- The NOT function is considered logical, NEG function is considered an arithmetic operation.

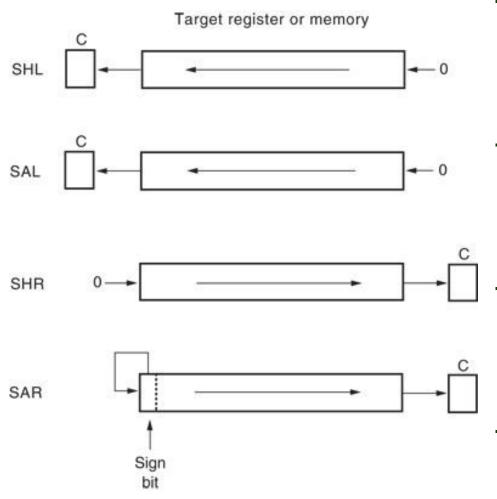


#### Shift and Rotate

• Shift and rotate instructions manipulate binary numbers at the binary bit level.

- as did AND, OR, Exclusive-OR, and NOT

- Common applications in low-level software used to control I/O devices.
- The microprocessor contains a complete complement of shift and rotate instructions that are used to shift or rotate any memory data or register.




### Shift

- Position or move numbers to the left or right within a register or memory location.
  - also perform simple arithmetic as multiplication by powers of 2<sup>+n</sup> (left shift) and division by powers of 2<sup>-n</sup> (right shift).
- The microprocessor's instruction set contains four different shift instructions:
  - two are logical; two are arithmetic shifts
- All four shift operations appear in Figure 5–9.



Figure 5–9 The shift instructions showing the operation and direction of the shift.



- logical shifts move 0 in the rightmost bit for a logical left shift;
- 0 to the leftmost bit position for a logical right shift
- arithmetic right shift
   copies the sign-bit
   through the number
- logical right shift copies a 0 through the number.

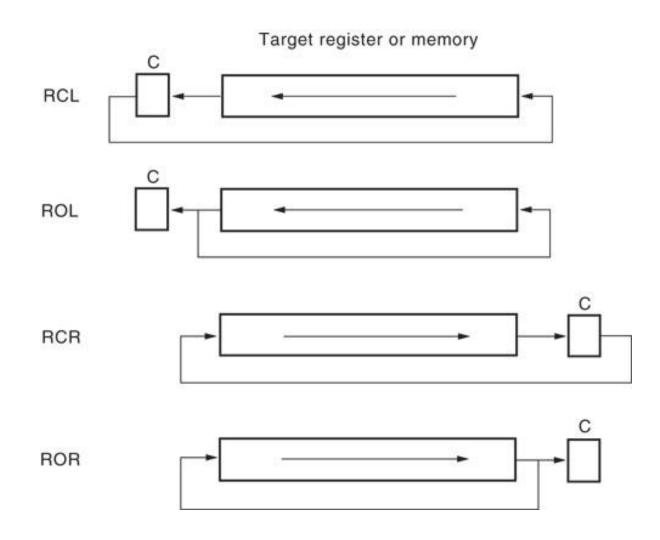
The Intel Microprocessors: 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium, Pentium Pro Processor, Pentium II, Pentium, 4, and Core2 with 64-bit Extensions Architecture, Programming, and Interfacing, Eighth Edition Barry B. Brey

- Logical shifts multiply or divide unsigned data; arithmetic shifts multiply or divide signed data.
  - a shift left always multiplies by 2 for each bit position shifted
  - a shift right always divides by 2 for each position
  - shifting a two places, multiplies or divides by 4



# Double-Precision Shifts (80386– Core2 Only)

- 80386 and above contain two double precision shifts: SHLD (shift left) and SHRD (shift right).
- Each instruction contains three operands.
- Both function with two 16-or 32-bit registers,
  - or with one 16- or 32-bit memory location and a register




#### Rotate

- Positions binary data by rotating information in a register or memory location, either from one end to another or through the carry flag.
   used to shift/position numbers wider than 16 bits
- With either type of instruction, the programmer can select either a left or a right rotate.
- Addressing modes used with rotate are the same as those used with shifts.
- Rotate instructions appear in Figure 5–10.

PEARSON

**Figure 5–10** The rotate instructions showing the direction and operation of each rotate.



PEARSON The Intel Microprocessors: 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium, Pentium Pro Processor, Pentium II, Pentium, 4, and Core2 with 64-bit Extensions Architecture, Programming, and Interfacing, Eighth Edition Barry B. Brey

Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 • All rights reserved. • A rotate count can be immediate or located in register CL.

- if CL is used for a rotate count, it does not change

 Rotate instructions are often used to shift wide numbers to the left or right.



# **Bit Scan Instructions**

- Scan through a number searching for a 1-bit.
  - accomplished by shifting the number
  - available in 80386-Pentium 4
- BSF scans the number from the leftmost bit toward the right; BSR scans the number from the rightmost bit toward the left.
  - if a 1-bit is encountered, the zero flag is set and the bit position number of the 1-bit is placed into the destination operand

- if no 1-bit is encountered the zero flag is cleared



# **5-6 STRING COMPARISONS**

- String instructions are powerful because they allow the programmer to manipulate large blocks of data with relative ease.
- Block data manipulation occurs with MOVS, LODS, STOS, INS, and OUTS.
- Additional string instructions allow a section of memory to be tested against a constant or against another section of memory.

- SCAS (string scan); CMPS (string compare)



#### SCAS

- Compares the AL register with a byte block of memory, AX with a word block, or EAX with a doubleword block of memory.
- Opcode used for byte comparison is SCASB; for word comparison SCASW; doubleword comparison is SCASD
- SCAS uses direction flag (D) to select autoincrement or auto-decrement operation for DI.
   – also repeat if prefixed by conditional repeat prefix



#### CMPS

- Always compares two sections of memory data as bytes (CMPSB), words (CMPSW), or doublewords (CMPSD).
  - contents of the data segment memory location addressed by SI are compared with contents of extra segment memory addressed by DI
  - CMPS instruction increments/decrements SI & DI
- Normally used with REPE or REPNE prefix.
  - alternates are REPZ (repeat while zero) and REPNZ (repeat while not zero)



### SUMMARY

- Addition (ADD) can be 8, 16, 32, or 64 bits.
- The ADD instruction allows any addressing mode except segment register addressing.
- Most flags (C, A, S, Z, P, and O) change when the ADD instruction executes.
- A different type of addition, add-with-carry (ADC), adds two operands and the contents of the carry flag (C).

### SUMMARY

- The 80486 through the Core2 processors have an additional instruction (XADD) that combines an addition with an exchange.
- The increment instruction (INC) adds 1 to the byte, word, or doubleword con-tents of a register or memory location.
- The INC instruction affects the same flag bits as ADD except the carry flag.

(*CONT.*)

# SUMMARY

- BYTE PTR, WORD PTR, DWORD PTR, or QWORD PTR directives appear with the INC instruction when contents of a memory location are addressed by a pointer.
- Subtraction (SUB) is a byte, word, doubleword, or quadword and is performed on a register or a memory location.
- The only form of addressing not allowed by the SUB instruction is segment register addressing.

PEARSON

(*cont.* 

- The subtract instruction affects the same flags as ADD and subtracts carry if the SBB form is used.
- The decrement (DEC) instruction subtracts 1 from the contents of a register or a memory location.
- The only addressing modes not allowed with DEC are immediate or segment register addressing.



- The DEC instruction does not affect the carry flag and is often used with BYTE PTR, WORD PTR, DWORD PTR, or QWORD PTR.
- The comparison (CMP) instruction is a special form of subtraction that does not store the difference; instead, the flags change to reflect the difference.



(*CONT.*)

- Comparison is used to compare an entire byte or word located in any register (ex-cept segment) or memory location.
- An additional comparison instruction (CMPXCHG), which is a combination of comparison and exchange instructions, is found in the 80486-Core2 processors.
- In the Pentium-Core2 processors, the CMPXCHG8B instruction compares and exchanges quadword data.



- Multiplication is byte, word, or doubleword; can be signed (IMUL) or un-signed (MUL).
- The 8-bit multiplication always multiplies register AL by an oper-and with the product found in AX.
- The 16-bit multiplication always multiplies register AX by an operand with the product found in DX-AX.



(*cont.*)

- (cont.)
- The 32-bit multiply always multiplies register EAX by an operand with the product found in EDX-EAX.
- A special IMUL immediate instruction exists on the 80186-Core2 proces-sors that contains three operands.
- In the Pentium 4 and Core2 with 64-bit mode enabled, multiplication is 64 bits.

- Division is byte, word, or doubleword, and it can be signed (IDIV) or unsigned (DIV).
- For an 8-bit division, the AX register divides by the operand, after which the quotient appears in AL and the remainder appears in AH.
- In the 16-bit division, the DX-AX register divides by the operand, after which the AX register contains the quotient and DX contains the remainder.



- In the 32-bit division, the EDX-EAX register is divided by the operand, after which the EAX register con-tains the quotient and the EDX register contains the remainder.
- The remainder after a signed division always assumes the sign of the dividend.
- BCD data add or subtract in packed form by adjusting the result of the addition with DAA or the subtraction with DAS.



(*CONT.*)

- ASCII data are added, subtracted, multiplied, or divided when the operations are adjusted with AAA, AAS, AAM, and AAD.
- These instructions do not function in the 64bit mode.
- The AAM instruction has an interesting added feature that allows it to convert a binary number into unpacked BCD.



- This instruction converts a binary number between 00H-63H into unpacked BCD in AX.
- The AAM instruction divides AX by 10, and leaves the remainder in AL and quotient in AH.
- These instructions do not function in the 64bit mode.



The Intel Microprocessors: 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium, Pentium Pro Processor, Pentium II, Pentium, 4, and Core2 with 64-bit Extensions Architecture, Programming, and Interfacing, Eighth Edition Barry B. Brey

- The AND, OR, and Exclusive-OR instructions perform logic functions on a byte, word, or doubleword stored in a register or memory location.
- All flags change with these instructions, with carry (C) and overflow (O) cleared.
- The TEST instruction performs the AND operation, but the logical product is lost.
- This instruction changes the flag bits to indicate the outcome of the test.

*The Intel Microprocessors: 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium, Pentium Pro Processor, Pentium II, Pentium, 4, and Core2 with 64-bit Extensions Architecture, Programming, and Interfacing,* Eighth Edition Barry B. Brey

- The NOT and NEG instructions perform logical inversion and arithmetic inversion.
- The NOT instruction one's complements an operand, and the NEG in-struction two's complements an operand.



(*CONT.*)

- There are eight different shift and rotate instructions.
- Each of these instructions shifts or rotates a byte, word, or doubleword register or memory data.
- These instructions have two operands: The first is the location of the data shifted or rotated, and the second is an immediate shift or rotate count or CL.



- (cont.)
- If the second operand is CL, the CL register holds the shift or rotate count.
- In the 80386 through the Core2 processors, two additional double-precision shifts (SHRD and SHLD) exist.
- The scan string (SCAS) instruction compares AL, AX, or EAX with the contents of the extra segment memory location addressed by DI.



- The string compare (CMPS) instruction compares the byte, word, or doubleword contents of two sections of memory.
- One section is addressed by DI in the extra segment, and the other is addressed by SI in the data segment.



(*CONT.* 

- The SCAS and CMPS instructions repeat with the REPE or REPNE prefixes.
- The REPE prefix repeats the string instruction while an equal condition exists, and the REPNE repeats the string instruction while a not-equal condition exists.

